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Abstract

Cross-modal image retrieval has become mainstream
with the development of large multimodal model technol-
ogy. Cross-Modal Image Retrieval Track of 1st Foundation
Model Challenge is launched to research cross-modal im-
age retrieval performance on traffic scenes. In this report,
we describe the technical details of our submission to the
challenge. CLIP [6] is introduced as an overall network
architecture at first. Then we make adversarial attack to im-
prove the robustness of the network. In the training stage,
the Exponential Moving Average (EMA) significantly en-
hances training stability. Test Time Augmentation (TTA) and
model fusion are applied in the test stage to improve the
evaluation metrics. With these methods, we achieve Rank
2 in the challenge leaderboard B. The code is available at
https://aistudio.baidu.com/aistudio/projectdetail/6210965.

1. Introduction

Video surveillance data is growing rapidly with the popu-
larization of surveillance devices, which has led to increas-
ing demand for effective analysis of the data. The high-
performance image retrieval capability in traffic scenes is
more and more crucial for traffic law enforcement and public
security governance. Traditional image retrieval methods pay
more attention to searching for images by image. Nowadays,
cross-modal retrieval has become mainstream.

Cross-Modal Image Retrieval Track constructs a text re-
trieval image dataset with two categories of traffic partici-
pants: pedestrians and vehicles. The dataset has a total of
153728 images, including 136117 images in the training set
and 17611 images in the validation set. The data distribution
is shown in Table 1. There is one label for every image in
the dataset, which is consisted of image name, attribute an-
notation, and text. Attribute annotation contains categories
of participants, and text is a sentence describing the attribute.
In addition, the attribute of pedestrians is much richer than
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Figure 1. Images of the training dataset. There are two types of
annotations for vehicles. For Instance, (a) is labeled as ’White
Audi$This is a white Audi.’, while (b) is labeled as ’Mini-
van$This is a Minivan.’. Besides, the annotation of pedestri-
ans is much more complex than vehicles. (c) is labeled as
’1,0,1,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0$A pedestrian who is fe-
male is an adult person aged 18-60, with her body facing the camera
and has a shoulderbag. She is in a shirt with short sleeves.’.

that of vehicles. Some examples are shown in Fig. 1. More-
over, Complicated scenes and generalization (leaderboard
A/B) make it more challenging for the competition. To ad-
dress these challenges, we make several solid improvements
based on CLIP. The results of Leaderboard B demonstrate
the robustness and transferability of our solution. The imple-
mentation details mentioned above are illustrated in section
2 and section 3.

Table 1. Dataset distribution. The number of pedestrians is almost
twice as that of vehicles.

Category Training Set Test Set

pedestrians 90000 10000
vehicles 46117 7611

sum 136117 17611

2. Method

Our solution is built on the foundation of an elaborate
analysis of the dataset. We notice that annotations of both
pedestrians and vehicles possess notable features. As for
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vehicles, all attributes can be summarized into three cate-
gories: color, brand, and type. Furthermore, vehicle attribute
annotations in the training and validation dataset are incom-
plete, while every query text in the test dataset specifies all
three vehicle attributes, as shown in Table 2. When it comes
to pedestrians, the attribute annotation is much more vari-
ous. Apart from that, all attributes are hidden through binary
values deliberately.

Table 2. Examples of vehicle retrieval text in the training phase
and test phase. Only in the test phase, all three vehicle attributes of
color, brand, and type are included.

Phase Text

training case 1 This is a white JMC.
training case 2 This is a Minivan.

test case A white JMC Minivan.

Due to the inconsistency in the dataset, it is hard to solve
the task by classification network. As a result, we develop
our solution based on CLIP. The overall network architecture
is presented in Fig. 2. Following CLIP, we jointly train an
image encoder [7] (vision transformer) and a text encoder
(text transformer) to predict the correct pairings of a batch of
(image, text) training examples. Given that data of Leader-
board B is not released, we make use of several methods to
improve the performance and generalization of the model.

Data Augmentation Strong augmentation strategies are
applied to images to enhance the performance. The aug-
mentation pipeline includes random resize crop, random
horizontal flip, random color jitter, random affine, and Au-
toAugment [1]. Different strategies are applied in certain
probability in every training iteration for more randomness.

Adversarial Attack We make adversarial attack on text
embeddings for better generalization. Adversarial attack
means generating adversarial examples that significantly
increase the loss incurred by neural networks. Adversarial
examples are usually small perturbations to the input. In this
way, not only the robustness of the model is improved, but
also the generalization performance is enhanced. We apply
adversarial attack to the text transformer following Fast Gra-
dient Method (FGM) [5]. The adversarial perturbation is

radv = ϵ · g/||g||2 where g = ▽xL(y | x; θ) (1)

where x is the input and θ stands for the parameters of the
text embedding layers. We set ϵ as 1.0 in our experiments.

Imporved Contrastive Loss Function Considering that
there are probably the same attributes in one batch of training
examples since vehicle attributes are limited, we make some
adaptations to the original CLIP contrastive loss function.
Given a batch of N (image, text) pairs, CLIP learns a multi-
modal embedding space by jointly training an image encoder
and text encoder to maximize the cosine similarity and text

embeddings of the N real pairs while minimizing the cosine
similarity of the left N2 − N pairs. Next, it optimizes a
symmetric cross-entropy loss over these similarity scores.
However, different from CLIP with 400 million text-image
pairs of plenty of categories, there are also matching ones
among N2 −N pairs during our task. Therefore, we replace
cross-entropy loss with Kullback–Leibler(KL) divergence
loss for more precise matches in training [8]:

L =
1

2
E(x,y)∼D

[
KL(px2y(x), gx2y(x))

+KL(py2x(y), gy2x(y))
(2)

where gx2y(x) and gy2x(y) indicate the ground-truth simi-
larity scores, px2y(x) and py2x(y) stand for the predictions.
D means the entire training dataset.

3. Experiments
In this section, we conduct comprehensive experiments

on the dataset. And the comparisons of mean average per-
formance are presented to verify the effectiveness of the
proposed method. The results are in Table 3.

3.1. Training Tricks

Model Scale The configuration arguments of ViT become
bigger as the scale increases. From ViT-Base to ViT-Large,
the number of stacked encoder blocks doubles. Moreover,
the dimension of embeddings layers and the number of at-
tention heads grows. The capability of the model has been
significantly improved with the increase of parameters. As a
result, there is a mAP gain of about 3.5 points from ViT-Base
to ViT-Large.

Weights Exponential Moving Average EMA is utilized
in our solution to average the parameters of the model for
robustness. We use the momenta parameter of 0.999 during
training and save the EMA weights at the end of training.

Stratified K-Folds Cross-validation To avoid selection
bias and overfitting, we conduct Stratified K-Folds cross-
validation on the dataset. Specifically, we randomly split the
entire dataset into 14 folds while keeping the account of each
class the same in every fold. Due to training overhead, we
only select 5 of 14 folds for experiments. During inference,
we fuse the outputs of these models for stable predictions.

3.2. Experimental Settings

We explore different methods in several aspects including
network scale, adversarial attack, and contrastive loss func-
tion. The performance of Vision Transformer (ViT) variants
is evaluated on the validation set. We train ViT-Base without
freezing layers. Except for the 6 layers near the output, the
parameters of other layers are fixed during training since
the weights of the original CLIP are more generative. And
ViT-Large is adopted as the backbone of our submission.
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This is a white Audi

Figure 2. The overall network architecture. The network consists of an image encoder, a text encoder, and the embedding projection module.
In the image encoder, we use strong data augmentation. In the text encoder, we make adversarial attack to text embeddings. And in the
embedding projection module, we promote the positive samples assignment strategy.

Table 3. Results of methods on Leaderboard A/B. We make comparisons between different model scales, tricks, and fusion strategies. When
ViT-Large, EMA, AutoAug, FGM, and add sim are composed, we obtain the best score in Leaderboard A.

Scale Trick Fusion Leaderboard
ViT-Base ViT-Large EMA AutoAug FGM cat feat add feat add sim A B

✓ ✓ 69.649
✓ ✓ 73.114
✓ ✓ ✓ 74.633
✓ ✓ ✓ 74.837
✓ ✓ ✓ ✓ ✓ 76.264
✓ ✓ ✓ ✓ ✓ 75.951
✓ ✓ ✓ ✓ ✓ 76.268 68.5

All the experiments are conducted by using of PaddlePad-
dle [4], which is an open-source deep learning platform
developed by Baidu, Inc. And the code is based on UFO [9].
We run experiments on 8 NVIDIA A40 GPUs with batch
size of 1024. We adopt the AdamW optimizer as well as
a CosineAnnealingLR scheduler with base learning rate of
5e-4. We train the model for 20 epochs, the ratio of WarmUp
is 0.1, and the initial learning rate is set to 5e-5. The input
image size is 224*224 since larger size input brings no gain
in mean average precision in experiments. The model is
evaluated every epoch, and only the best one is kept.

3.3. Testing Tricks

During inference, we also use test time augmentation and
different model fusion methods to improve the precision and
stability of predictions. Quantitative results are shown in
Fig. 3.

Test Time Augmentation In experiments, we find that
simply averaging image embeddings of the original image
and the horizontal flip image itself can improve the mAP.
Besides, we also try to use the average of FiveCrop from the
original image. However, it does not generate higher mAP



This is a black Volkswagen Sedan.

A pedestrian who is female is between 18 and 60 years old, 

with her body facing the camera. She is wearing glasses.
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Figure 3. The quantitative results of retrieval. The results of vehicles
are better than pedestrians for the attribute features are relatively
simpler than pedestrians.

than the former method.
Model Fusion Based on the five models trained by the

cross-validation method, we explore different model fusion
strategies including add sim, add feat, and cat feat. Add
sim means adding output similarity matrices of five models,
add feat means averaging the image embeddings generated
by five models, and add feat means concatenating image
embeddings in the last dimension. In our experiments, all
three methods can slightly improve the mAP, and add sim
generates the highest score of 76.268 in Leaderboard A as
well as 68.5 in Leaderboard B.

4. Conclusion

The proposed method for Cross-Modal Image Retrieval
Track of 1st foundation model challenge is illustrated in this
report in detail. We explore data augmentation, model struc-
ture, and training tricks through comprehensive experiments.
Strong data augmentations are applied first to the training
pipeline, then proper model scale and input image size are
studied. We optimize the contrastive loss function and make
adversarial attack during training. After that, SKF, EMA,
TTA, and model fusion are used for better model perfor-
mance and robustness. By assembling these strategies, we
achieve a competitive performance in leaderboard B, which
demonstrates the effectiveness of our solution.

In future work, we are going to reflect on methods that
work theoretically, nonetheless fail to improve the mAP. For
example, we made an attempt to complete vehicle attributes
by selecting the attributes shared the highest similarity with
the image through prompting. We also try to introduce the
moving-averaged encoder from MoCo [2] into our solution.
We hold that model fusion between different network ar-
chitectures like Transformer and ConvNext [3] can achieve
better performance. We hope our solution can arouse insight

and contribute to the development of the foundation model
society.
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