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Abstract

Different from the previous single-task ”training from
scratch” scheme, the unified foundation model promotes
knowledge communications by optimizing multiple tasks si-
multaneously. Due to its remarkable feature representation
and robust generalization ability, the unified large models
have been applied in many visual scenes. In this paper, we
propose a stronger foundation model and exploit it in the in-
telligent transportation industry for classification, segmen-
tation, and detection tasks. Specifically, we apply Swin
Transformer which is friendly for dense recognition tasks
as our backbone and adopts Mask2Former and DINO as
segmentation and detection heads respectively. For classi-
fication, we construct a Cross-Level Feature Fuse Module
(CLFFM) to utilize multi-scale tokens. In addition, a two-
stage optimization method based on an uncertainty weight-
ing strategy is proposed, encouraging the model to learn a
general and robust feature representation in early training.
Furthermore, a universal data augmentation pipeline called
DAPMT is designed, aiming to prevent the model from over-
fitting. Our method finally won third place in the CVPR
2023 1st Foundation model challenge.

1. Introduction

The past few years have witnessed the prosperity of deep
learning, many milestone works have been proposed and
made remarkable achievements in many vision fields, e.g.,
image classification, object detection, and image segmenta-
tion. However, most of these works are based on Single-
Task Learning which heavily depends on the distribution of
training data, thus may cause a poor generalization ability.

Recently, with the development of computer processing
capabilities and the enrichment of application scenarios, the
AllinOne model which aims to solve multiple tasks in a uni-
fied architecture has become an urgent demand. In natu-
ral language processing (NLP), large-scale language mod-
els (LLMs) have entered the mainstream, which can han-
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dle a variety of natural language processing tasks including
summarizing, translating, recognizing, predicting, generat-
ing text and other forms of content, based on large trans-
former models pretrained from the massive corpus.

Inspired by the significant success of multi-task large
models in NLP, great progress has also been made in com-
puter vision. UFO [1] proposes a novel training and de-
ploying paradigm, which trains a supernet and extracts a
dedicated sub-network for each specific downstream task
by trim, thus leading to a big convenience for flexible de-
ployment. Based on UFO, Open-TransMind [2] proposes a
multi-task foundation model, which aims to use one unified
model to handle the classification, segmentation, and de-
tection tasks simultaneously in the transportation scene and
has won a superior performance, compared with learning
each task individually. However, it still needs to improve
in some aspects, such as small object segmentation and de-
tection, the weak effect caused by few shot data in some
scenes, and unsatisfying generalization.

In this work, we construct a stronger foundation model
based on Open-TransMind. First, considering the impor-
tance of multi-scale information in dense prediction tasks,
we employ a hierarchical Swin Transformer [3] instead
of ViT [4]. Secondly, we specially design the structure
for classification and segmentation. For classification, we
construct a cross-level feature fusion module (CLFFM) to
enhance the detail representation. For segmentation, we
adopt Mask2Former [5], which can use multi-scale high
resolution features and is convenient to solve all the seg-
mentation tasks in a unified manner. Thirdly, to prompt
more robust training, a two-stage optimization method is
proposed which can automatically weight each task based
on homoscedastic task uncertainty. Moreover, we present
a universal data augmentation pipeline named DAPMT
(Data Augmentation Pipeline for Multi-Task) which in-
cludes three different augmentation pools: color, space,
and noise, with the purpose of strengthening the general-
ization and robustness in various scenes, especially a few
shot scenes. The experiments show that our model achieves
excellent performance with scores of 70.45%, 95.60%, and
95.45% in segmentation, classification and detection re-



spectively, which outperforms Open-TransMind and proves
the effectiveness.

2. Methodology
In this section, we introduce the overall framework of

our foundation model. As illustrated in Figure. 1, It con-
sists of a shared backbone for extracting multi-scale fea-
tures and three prediction heads responsible for each task
respectively.

2.1. Backbone

ViT has achieved comparable or superior performance
over CNNs in many image classification tasks, however, its
columnar structure is not suitable for dense task prediction,
such as object detection and semantic segmentation. Thus,
in this work, we adopt Swin Transformer as our backbone.
It is a hierarchical structure that is flexible to model at var-
ious scales and has linear computational complexity, bene-
fitting from its shifted windowing scheme.

2.2. Detection Module

Currently, more and more transformer-based object
detection methods have been proposed, among which
DINO [6] has achieved excellent performance in both ac-
celerating training convergence and detection results, due to
its improvements of comparative denoising training, mixed
query selection and look forward twice. Thus we select
DINO as our detection head.

2.3. Segmentation Module

Open-TransMind uses a progressive upsampling head
(PUPHead) that still considers semantic segmentation as a
per-pixel classification task. However, several works [5]
have proven that the mask-level classification-based ap-
proach can be easily expanded to any segmentation tasks
(panoptic, instance, or semantic segmentation), without
changing structure or loss, which is consistent with our goal
of constructing a unified multi-task large model. Thus, we
adopt mask2fromer, a universal image segmentation archi-
tecture that contains a pixel decoder and a Transformer de-
coder with masked attention, in our model. It also proposes
an efficient strategy to exploit high-resolution features for
small object segmentation, which fits well with our multi-
scale backbone.

2.4. Classification Module

Open-TransMind adopts a linear-projection layer and a
fully connected layer as feature decoders for classification
tasks, which are unable to utilize multi-scale features. Thus,
we design a new structure called Cross-Level Feature Fu-
sion Module (CLFFM) to replace the original linear projec-
tion layer.
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Figure 1. The overall framework of our method.
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Figure 2. The structure of the Cross-Level Feature Fusion Module.

As illustrated in Figure. 2, we adopt a learnable gate to
automatically aggregate features from adjacent layers and
then a multi-head self-attention module (MHSA) is used to
mine detailed information from the fused token. While ef-
fectively utilizing multi-level features, the proposed struc-
ture also strengthens the isolation between classification
and other branches, which is more conducive to classifica-
tion learning.

2.5. Two-Stage Optimization Objectives

In general, the performance of multi-task models
strongly depends on the relative weights of different tasks,
so it is of great importance to weigh multiple loss functions
adaptively. To this end, Lukas et al. [7] proposed a method
that can automatically adjust the loss weight of each task by
considering the homoscedastic uncertainty. The calculation
formula is as follows:

LT =
∑
τ∈T

1

2σ2
τ

+ log(1 + σ2
τ ) (1)

where τ ∈ T represents individual tasks, and Lτ denotes the
loss of each task. σ is the homoscedasticity that denotes the
uncertainty of each task. Larger homoscedasticity indicates
that the task is more difficult to optimize.

In this work, considering that the optimization objective
of the multi-task large model focuses on different aspects in
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Figure 3. Illustration of three data augmentation pools.

early and middle-later training periods, we propose a two-
stage optimization method, which can be explained in the
formula (2). In the early period, influenced by data quality
and optimization difficulty, there usually shows an obvious
loss imbalance across multiple tasks, which may lead to bi-
ased learning. In this condition, the dynamic loss weighting
principle illustrated above can reduce the weight of the task
that is hard to optimize, promoting the model to learn a gen-
eral and robust representation from easier tasks. However,
starting from the mid-term, the model should pay more at-
tention to difficult tasks, in which case dynamic loss weight-
ing should be turned off. It should be noted that we gener-
ally define the first 1/5 of the total training iters or epochs
as the early period.

LT =

{ ∑
τ∈T

1
2σ2

τ
+ log(1 + σ2

τ ), iter ∈ early period∑
τ∈T Lτ , iter ∈ middle− later period

(2)

2.6. Data Augmentation Pipeline for Multi-Task

Furthermore, we propose a universal data augmentation
pipeline for multi-task training(DAPMT) which can be eas-
ily transferred to other unified model training. Specifically,
we split the commonly used data augmentation methods
into three pools, called spatial augmentation pool, noise
augmentation pool, and color augmentation pool, as shown
in Figure 3. The spatial augmentation pool includes ro-
tation, scale-shift rotation, horizontal flip, and grid shuf-
fle (for classification tasks only). The noise augmentation
pool includes Random Blur, Gaussian Blur, JPG Compres-
sion, IOS Noise, Gaussian Noise, and more. The color aug-
mentation pool includes RGB shift, Random brightness and
contrast adjustments, Color jitter, and more. During train-
ing, the pipeline randomly selects one augmentation method
from each pool and then composes them into a new augmen-
tation operation, which effectively extends the distribution
of the training data.

Notably, for different application scenarios, we can flex-
ibly adjust each data augmentation pool. Considering the
traffic scene in this work, we add mosaic and random
weather (rain, fog) augmentation methods to the spatial and
color augmentation pools respectively, aiming to improve
the performance in segmenting and detecting small objects
as well as adaptability under different weather conditions.

3. Experiments
3.1. Settings

Datasets. Same with Open-TransMind, we use Stanford
Car, TT100K, and BDD100K datasets for image classifi-
cation, object detection, and semantic segmentation tasks
respectively. The Standford Car dataset consists of 196 car
classes with 16,185 images, of which 8,144 images are used
for training and left 8,041 images for testing. Tsinghua-
Tencent 100K (TT100K) is a large benchmark for traffic-
sign detection and classification, which provides 100,000
images containing 30,000 traffic-sign instances. We use
detection-annotated samples, which consist of 6,107 train
images and 3,067 test images. BDD100K is a large-scale
diverse driving video dataset with annotations for ten tasks.
In this work, we use samples for the semantic segmenta-
tion task, containing 19 classes, including 7,000 images for
training and 1,000 for testing.
Evaluation Metrics. We employ Acc, mIoU, and mAP as
metrics to evaluate classification, segmentation and detec-
tion, respectively. And we calculate the average of these
three metrics as a global metric to measure the overall ef-
fectiveness of the foundation model.
Experiment Settings. We initialize the backbone with the
parameters pretrained on imagenet-22k. We train our model
for 80 epochs on eight A100 GPUs with batch sizes of 8, 64,
and 8 for segmentation, classification, and detection tasks
respectively. In the first 20 epochs, we turn on the dynamic
loss weighting. For the last 10 epochs, we stop the mo-
saic augmentation in the segmentation and detection tasks
for a better fit on the distribution of the training data. Be-
sides, we use the AdamW optimizer with an initial learning
rate of 0.0001 and a weight decay of 0.0001. For the learn-
ing rate, we employ a linear warmup for the first 200 itera-
tions and then gradually decrease the learning rate using the
CosineAnnealingLR strategy. Additionally, we set the input
size of detection to 1184 for better performance in detecting
small objects.

3.2. Experiments Results

To validate the effectiveness of our improvements, we
conduct multiple comparison experiments, and the results
are shown in Table 1. The first two rows of the Table list the
scores of the baseline with different ViT scales.

We first replace the backbone with Swin Transformer
Large and win scores of 60.94%, 94.71%, and 84.10% in
three tasks, which completely exceed the baseline with ViT-
Base, especially in segmentation and detection tasks, as
shown in the third row. Based on the third row, we fur-
ther adopt mask2former and CLFFM, instead of the orig-
inal PupHead structure and linear-projection layer, which
makes great progress of 5.92% and 0.49% in segmenta-
tion and classification tasks respectively, as illustrated in



Table 1. Comparison of our method with Open-TransMind on three tasks. Ours-Large indicates the model with a higher input resolution.
Ours-Large* means we adopt the two-stage optimization method during training.

Method Backbone Seg Head Cls Head Det Head Seg(mIoU%) Cls(acc%) Det(mAP%) Avg

Open-TransMind
ViT-Base PupHead Linear-Projection DINO 55.13 91.64 76.90 74.56
ViT-Huge PupHead Linear-Projection DINO 64.80 95.96 83.24 81.33

Ours Swin-Large PupHead Linear-Projection DINO 60.94 94.71 84.10 79.92
Swin-Large Mask2Former CLFFM DINO 66.86 95.20 84.66 82.24

Ours-Large Swin-Large Mask2Former CLFFM DINO 69.52 95.72 94.83 86.69
Ours-Large* Swin-Large Mask2Former CLFFM DINO 70.45 95.60 95.45 87.17

the fourth row. The experiments above reveal that both the
stronger backbone and individual task head are crucial for
the unified large model. Then, to improve the detection per-
formance of small targets, we scale up the input resolution
in the detection task from 640 to 1184 and employ a mo-
saic augmentation method. From the results listed in the
second-to-last row of the table, we can observe a significant
gain of 10.17% in mAP. Notably, the mIoU of the segmenta-
tion task also increased by 2.66%, indicating that the strate-
gies used in the detection task are also beneficial for seg-
mentation, which obviously exhibits the advantages of the
knowledge reference mechanism between different tasks in
a unified model. Besides, we further apply the mosaic strat-
egy in segmentation and the two-stage optimization method
is also adopted, which is present in the last row of the ta-
ble. It can be seen that by aggregating all these improve-
ments our model acquire the best performance of 70.45%,
95.60%, and 95.45% in segmentation, classification, and
detection, respectively, which even surpasses the ViT-Huge
based baseline and win significant advantages. The exten-
sive experimental results demonstrate the effectiveness and
superiority of our foundation model.

4. Conclusion

In this paper, a stronger unified foundation model is pro-
posed to improve the performance of multiple visual tasks
in the intelligent transportation industry. We apply Swin
Transformer as our hierarchical feature extractors and in-
troduce Mask2Former and DINO in segmentation and de-
tection tasks respectively. For the classification task, We
design a new structure called CLFFM, which introduces a
learnable Gate and MHSA modules to fuse and mine de-
tailed information from multi-scale features. In addition,
we adopt a two-stage optimization method that encourages
robust learning at the beginning of training by balancing
multi-task loss dynamically and then focusing on difficult
tasks in the mid-term. Moreover, we introduce DAPMT, a
universal pipeline with abundant data augmentation combi-
nations, which can be easily adjusted and injected into other

multi-task training.
A series of experiments show that our model substan-

tially outperforms the baselines. And we also hope that our
work can serve as a new starting point, attracting more in-
terest in universal model improvements.

References
[1] Teng Xi, Yifan Sun, Deli Yu, Bi Li, Nan Peng, Gang Zhang,

Xinyu Zhang, Zhigang Wang, Jinwen Chen, Jian Wang,
Haocheng Feng Lufei Liu, Junyu Han, Jingtuo Liu, Errui
Ding, and Jingdong Wang. Ufo: Unified feature optimization.
In ECCV, 2022. 1

[2] Yifeng Shi, Feng Lv, Xinliang Wang, Chunlong Xia, Shaojie
Li, Shujie Yang, Teng Xi, and Gang Zhang. Open-transmind:
A new baseline and benchmark for 1st foundation model chal-
lenge of intelligent transportation. In CVPR, pages 6327–
6334, 2023. 1

[3] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hi-
erarchical vision transformer using shifted windows. In ICCV,
pages 10012–10022, 2021. 1

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. 1

[5] Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan-
der Kirillov, and Rohit Girdhar. Masked-attention mask trans-
former for universal image segmentation. In CVPR, pages
1290–1299, 2022. 1, 2

[6] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun
Zhu, Lionel M. Ni, and Heung-Yeung Shum. Dino: Detr with
improved denoising anchor boxes for end-to-end object detec-
tion. arXiv preprint arXiv:2203.03605, 2022. 2

[7] Lukas Liebel and Marco Korner. Auxiliary tasks in multi-task
learning. arXiv preprint arXiv:1907.03892, 2018. 2


	. Introduction
	. Methodology
	. Backbone
	. Detection Module
	. Segmentation Module
	. Classification Module
	. Two-Stage Optimization Objectives
	. Data Augmentation Pipeline for Multi-Task

	. Experiments
	. Settings
	. Experiments Results

	. Conclusion

