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Abstract

In this paper, we present an enhanced version of a multi-
task network architecture that accomplishes semantic seg-
mentation, image classification, and object detection simul-
taneously within a single model. Our proposed model lever-
ages the All-in-One training strategy, which allows for ef-
ficient joint learning of multiple tasks. To construct this
architecture, we employ ConvNeXt-large as the backbone
network, UPerNet as the segmentation head, CBAM as the
classification head, and YOLOv5 head as the object de-
tection head. Through extensive experimentation, we have
demonstrated the effectiveness of our approach, leading to
our model achieving 1st place in the multi-task track of the
CVPR 1st foundation model challenge.

1. Introduction
Recent technological advancements have facilitated the

emergence of large-scale pre-trained models that undergo
training on extensive datasets. These models possess the
capacity to acquire more generalized knowledge by effec-
tively processing immense volumes of data. As a result,
fine-tuning these models for novel tasks holds immense po-
tential for achieving favorable outcomes. Moreover, pre-
trained models can leverage their existing knowledge to
augment their performance on tasks that are closely related
but distinct, thereby substantially diminishing the requisite
amount of task-specific training data.

Despite the notable advantages associated with the uti-
lization of pre-trained models, the repetitive nature of fine-
tuning these models for each new task entails significant
costs. Consequently, substantial research efforts have been
directed towards the development of techniques that aim
to minimize the extent of required fine-tuning while con-
currently achieving exceptional performance. One such
technique is the Unified Feature Optimization (UFO) tech-
nology, which was introduced by Baidu [8]. This inno-
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vative technology exhibits the ability to handle multiple
tasks through training on data encompassing diverse tasks.
Specifically, the VIMER-UFO All-in-One multi-task train-
ing scheme not only enhances the performance of individ-
ual tasks by leveraging cross-task information but also obvi-
ates the need for downstream task-specific fine-tuning pro-
cesses.

To improve the generalization ability of models through
multi-task joint training, the CVPR 1st foundation model
multi-task challenge was organized. Participants were re-
quired to design a unified model capable of classification,
detection, and segmentation for traffic scenarios. In this pa-
per, we present a multi-task model based on the baseline
framework given by the organizer [5]. The baseline pro-
vides a multi-task model with ViT-base [1] as the backbone
and corresponding heads for each task. For the task of ob-
ject detection, DINO [10] is utilized. In order to perform
semantic segmentation, SETR [11] is used. For the image
classification task, a straightforward approach is adopted,
where a fully connected layer is employed to predict the
image’s corresponding category.

In this paper, we enhance the baseline by proposing a
novel multi-task model. We incorporated ConvNeXt [3] as
the backbone and redesigned the head for each task. Specif-
ically, we utilized UPerNet [9] for segmentation, CBAM [7]
and fully connected layers for classification, and YOLOv5
[2] for detection. This modification resulted in an approxi-
mate 11% improvement in the overall score. During the in-
ference phase, we employed the Test Time Adaptation strat-
egy (TTA), which encompassed the application of multi-
scale and horizontal flip techniques. As a result, our model
surpassed the baseline and achieved the top-ranking posi-
tion in the competition.

2. Method
2.1. Problem Definition

The objective of this track is to enhance the model’s gen-
eralization ability through multi-task joint training and re-
solve conflicts between different tasks. In the context of
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Figure 1. The architecture of our proposed model. We utilize the ConvNext model as the shared backbone. Each task has its own inde-
pendent input shape, and the backbone generates four distinct levels of features that can be utilized by the tasks. In terms of segmentation,
we employ a UPerNet head. As for classification, we utilize convolution layers along with the CBAM attention module. In the case of
detection, we leverage YOLOCSPPAN and YOLOv5 Head to produce object boxes.

Task Train Val Test Avg size

segmentation 7000 674 1000 [1280, 720]
classification 8144 786 8041 [572, 307]
detection 6103 610 3067 [2048, 2048]

Table 1. The distribution of the number of datasets.

traffic scenarios, this track specifically selects three repre-
sentative tasks: classification, detection, and segmentation
for All-in-One joint training. This allows the single model
to possess the ability to perform all three tasks while achiev-
ing performance that surpasses that of specific single-task
models.

In the leaderboard A, the distribution of the training, val-
idation, and test datasets is presented in Table 1. It is worth
noting that the tasks and data pertaining to leaderboard B
remain undisclosed. To bolster the model’s robustness, it is
advisable to avoid excessive dependence on strategies tai-
lored exclusively to the dataset. Rather, the emphasis should
be placed on the development of improved network archi-
tectures and training strategies.

2.2. Modeling

For this particular challenge, the selection of an appro-
priate backbone stands as a critical factor. The initial choice
for the backbone in the baseline model was ViT-base, com-
prising a mere 86 million parameters. However, considering
the current task at hand, it is plausible that the model may
be slightly undersized. Hence, taking into consideration
both memory utilization and experimental findings, we em-
ployed ConvNeXt-L [3] as the backbone for our multi-task
model, which possesses a larger parameter count, amount-
ing to 198 million.

The architecture of our proposed model is depicted in

Figure 1. Each task is assigned its own distinct input shape.
To extract features from various levels, we employ Con-
vNeXt as the shared backbone, which effectively generates
four distinct features.

For the segmentation task, we employ the UPerNet head
[9], which accepts four features as input and integrates an
auxiliary loss to enhance the training process. The loss
function employed in this context is an unweighted cross-
entropy loss.

For the classification task, our approach incorporates a
structured architecture consisting of a convolutional layer,
a Convolutional Block Attention Module (CBAM) [7], and
a fully connected layer. This architecture takes the output
of the final layer of ConvNeXt as its input. To optimize
the model during training, an unweighted cross-entropy loss
function is employed.

For the detection task, we leverage the well-established
object detection algorithm YOLOv5 [2]. To enhance the fu-
sion of features from multiple layers, we employ YOLOC-
SPPAN. Subsequently, prediction boxes are generated us-
ing YOLOv5 Head. To train the detection task, we utilize
YOLOv5 Loss.

2.3. Training strategy

We employ the training strategy outlined in Algorithm
1. In dataloader, each batch is a composite batch that con-
tains data for segmentation, classification, and detection.
These batches, referred to as ”task-batch” have varying
batch sizes. During each training step, we initially forward
the backbone to extract multiple features. Subsequently,
these features are passed through task-specific heads to gen-
erate predictions. The task-specific loss function is then
employed to compute the loss, followed by the backward
propagation step. Once all tasks have been processed, the
model parameters are updated.



Algorithm 1 Train strategy of multi-task model

1: N is total epochs, M is steps of each epoch.
2: for epoch = 1 to N do
3: for step = 1 to M do
4: for task-batch in composite-batch do
5: features = backbone.forward(task-batch)
6: task-pred = task-head.forward(features)
7: loss = task-loss-func(task-pred, task-target)
8: loss.backward()
9: end for

10: optimizer.step().
11: end for
12: end for

3. Experiments

3.1. Implementation Details

The proposed multi-task model is implemented with the
deep learning framework PaddlePaddle [4]. The model
training process was conducted on a machine equipped with
six A100 GPUs, each possessing 80GB of memory.

Our network was trained with hyperparameters listed as
follows. For segmentation tasks, classification tasks, and
detection tasks, we allocated batch sizes of 3, 6, and 2, re-
spectively. The training process employed the AdamW op-
timizer with an initial learning rate of 0.0001 and a weight
decay of 0.0001. Additionally, we incorporated a Warmup
learning rate decay for the initial 200 steps, followed by Co-
sine decay over 100 epochs. These hyperparameters were
carefully selected to optimize performance across a diverse
range of tasks.

3.2. Data augmentation

To enhance the quality and diversify the input images
utilized in the backbone, we implemented task-specific data
augmentation techniques for each respective task.

In order to improve the images utilized for the segmen-
tation task, we employed the subsequent data augmentation
techniques:

• Randomly scale the image by a factor of 0.5 to 2.0.
• Randomly rotate the image at an angle between -15°

and 15°, and fill in with a value of 127.5 and a label of
255 (background).

• Randomly crop a region of size [1024, 512], and if the
image size is smaller than [1024, 512], fill it with a
value of 127.5 and a label of 255 (background);

• Horizontally flip the image with a probability of 0.5.
• Randomly transform brightness, contrast, and expo-

sure.
• Add blur with a probability of 0.3.

Team Score Seg Cls Dec

huster 0.8749 0.71214 0.96045 0.95209
toothpick 0.8717 0.70453 0.95601 0.95452
Ours 0.8617 0.67104 0.95784 0.95615
Baseline 0.7461 0.5513 0.91683 0.77012

Table 2. The test scores of the leaderboard A. The bold fonts indi-
cate the best results.

Team Score Cls Dec

Ours 0.771 0.962 0.580
huster 0.760 0.97.3 0.54.7
toothpick 0.745 0.962 0.527

Table 3. The test scores of the leaderboard B. The bold fonts indi-
cate the best results.

To address classification tasks, we implemented the fol-
lowing data augmentation methods:

• Random erase image with a probability of 0.5.
• Horizontally flip the image with a probability of 0.5.
• Colorspace saturation with a probability of 0.5.

To address detection tasks, we employed the following data
augmentation methods:

• Perform random crops on the original image, ensuring
that the size after cropping is within the range of [0.3,
0.6] of the original image.

• Resize to [1024, 1024].
• Horizontally flip the image with a probability of 0.5.

3.3. Test Time Augmentation (TTA)

In this challenge, we employed the TTA (Test Time Aug-
mentation) technique during the inference.

For the segmentation task, in order to effectively adapt to
the multi-scale training, we employed the multi-scale and
horizontal flip TTA strategy. Additionally, we set the de-
fault input size to match the original image size.

For the classification task, we also utilized the TTA strat-
egy of multi-scale and horizontal flip, while keeping the in-
put size as [448,448].

For the detection task, To ensure better scale match-
ing during training, we also incorporated the TTA strat-
egy of multi-scale and horizontal flip during testing infer-
ence. Additionally, we employed the Weighted Boxes Fu-
sion (WBF) [6] method as the post-processing module for
merging the bounding boxes. The initial input size was set
to [2048,2048].

3.4. Experimental Results

The overall results can be observed from Table 2 and Ta-
ble 3, where the top 3 teams’ scores significantly surpass



Method Scales mIoU on Val

Original [1.0] 0.6565
MS [0.9, 1.0, 1.2] 0.6765
MS [1.0, 1.2, 1.6] 0.6786
MS + FlipH [1.0, 1.2, 1.6] 0.6804

Table 4. TTA results for the segmentation task on the validation
dataset. The bold fonts indicate the best results. (MS represents
multi-scale, and FlipH represents flip horizontally.)

Method Scales Acc@1 on Val

Original [1.0] 0.9578
MS [0.6, 0.8, 1.0] 0.9565
MS [1.0, 1.2, 1.4] 0.9608
MS + FlipH [1.0, 1.2, 1.4] 0.9656

Table 5. TTA results for the classification task on the validation
dataset. The bold fonts indicate the best results.(MS represents
multi-scale, and FlipH represents flip horizontally.)

Method Sizes mAP50 on Val

Original [2048] 0.949
MS [2048, 1344, 1504] 0.952
MS [2048, 1568, 2240] 0.956
MS+ FlipH+NMS [2048, 1568, 2240] 0.960
MS + FlipH+WBF [2048, 1568, 2240] 0.966

Table 6. TTA results for the detection task on the validation
dataset. The bold fonts indicate the best results. (MS represents
multi-scale, and FlipH represents flip horizontally.)

the baseline. Our approach ranks 3rd on leaderboard A and
achieves a remarkable leap on leaderboard B, securing the
1st position. It is worth noting that our detection scores
consistently rank first, far surpassing other teams on leader-
board B.

In addition, during the testing phase, we discovered that
utilizing the TTA (Test Time Augmentation) method signifi-
cantly improves the inference performance, as shown in Ta-
bles 4, 5, and 6. Employing multi-scale inference and hori-
zontal flipping resulted in an approximate score improve-
ment of 1 percent. In the detection task, employing the
WBF post-processing method further yielded a 1 percent
improvement.

4. Conclusion

In this paper, we propose a multi-task model architecture
capable of simultaneously performing segmentation, classi-
fication, and detection tasks. We utilize ConvNeXt-L as the
backbone, UPerNet as the segmentation head, CBAM+FC

as the classification head, and YOLOv5 as the detection
head. During the testing phase, we employ the TTA (Test
Time Augmentation) method with multi-scale and horizon-
tal flipping. Ultimately, our team achieved first place in the
CVPR 1st foundation model challenge.
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